Abstract

The thymidine analog bromodeoxyuridine (BrdU) is incorporated into newly synthesized DNA and has been shown to increase the susceptibility of incorporating cells to ionizing radiation. However, in the absence of secondary stressors, BrdU is thought to substitute relatively benignly for thymidine and is commonly used to “birth-date” proliferative cells. We report a novel antiproliferative effect of BrdU on cancer cells, which is independent of its role in radiosensitization. A single, brief in vitro exposure to BrdU induces a profound and sustained reduction in the proliferation rate of all cancer cells examined. Cells do not die but variably up-regulate some senescence-associated proteins as they accumulate in the G1 phase of the cell cycle. Bromodeoxyuridine also impairs the proliferative capacity of primary tumor-initiating human glioma cells and may therefore represent a means of targeting cancer stem cells. Finally, conservative in vivo BrdU regimens—in the absence of any other treatment—significantly suppress the progression of gliomas in the highly aggressive, syngeneic RG2 model. These results suggest that BrdU may have an important role as an adjunctive therapeutic for a wide variety of cancers based on new insights into its effect as a negative regulator of cell cycle progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.