Abstract

Chemoresistance is a major obstacle in the clinical management of metastatic, castration-resistant prostate cancer (PCa). It is imperative to develop novel strategies to overcome chemoresistance and improve clinical outcomes in patients who have failed chemotherapy. Using a two-tier phenotypic screening platform, we identified bromocriptine mesylate as a potent and selective inhibitor of chemoresistant PCa cells. Bromocriptine effectively induced cell cycle arrest and activated apoptosis in chemoresistant PCa cells but not in chemoresponsive PCa cells. RNA-seq analyses revealed that bromocriptine affected a subset of genes implicated in the regulation of the cell cycle, DNA repair, and cell death. Interestingly, approximately one-third (50/157) of the differentially expressed genes affected by bromocriptine overlapped with known p53-p21- retinoblastoma protein (RB) target genes. At the protein level, bromocriptine increased the expression of dopamine D2 receptor (DRD2) and affected several classical and non-classical dopamine receptor signal pathways in chemoresistant PCa cells, including adenosine monophosphate-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa B (NF-κB), enhancer of zeste homolog 2 (EZH2), and survivin. As a monotherapy, bromocriptine treatment at 15 mg/kg, three times per week, via the intraperitoneal route significantly inhibited the skeletal growth of chemoresistant C4-2B-TaxR xenografts in athymic nude mice. In summary, these results provided the first preclinical evidence that bromocriptine is a selective and effective inhibitor of chemoresistant PCa. Due to its favorable clinical safety profiles, bromocriptine could be rapidly tested in PCa patients and repurposed as a novel subtype-specific treatment to overcome chemoresistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.