Abstract

Cibalackrot (Ci-I), one of the latest highly conjugated compound possessing bis-lactam structure, was investigated with respect to their brominated derivatives in order to determine their suitable substitution points for the syntheses of new class of small molecules for optoelectronic devices. 7,14-Bis(4-bromophenyl) (Ci-II) and 3,10-dibromo (Ci-III) derivatives of cibalackrot possess moderately narrow band gaps of 2.15 and 2.09 eV, respectively. Notably, Ci-III dye exhibits more red-shifted ultraviolet–visible (UV–vis) absorption and fluorescence emission spectra as compared to that of Ci-II dye because Ci-III shows more prominent intramolecular charge transfer (ICT) complex than that of Ci-II dye. Electron mobilities of the order of 7.0 × 10−4 cm2/V and 3.1 × 10−4 cm2/V were measured using Ci-II and Ci-III as active layer, respectively. Charge transfer properties of the molecules were investigated in bulk heterojunction device configuration wherein Ci-III showed p-type behavior against n-type PCBM in photovoltaic device. Photovoltaic performance of Ci-III dye which was used as donor component is 20 times higher than that of the device in which this dye was used as acceptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.