Abstract

The bromination reactivity of various types of polycyclic aromatic hydrocarbons (PAHs) with oxygen atoms and graphene with oxygen atoms was estimated by density functional theory calculation and experimentally clarified by analyzing bromination of PAHs using gas chromatography-mass spectrometry. In the experimental and theoretical bromination reactivity of PAHs, the presence of hydroxyl group increased the reactivity of PAHs because of electron-donating nature of the hydroxyl group but the other oxygen-containing functional groups such as lactone, ether, and ketone decreased the reactivity due to the electron-withdrawing nature of those groups. These effects of functional groups on the reactivity were also confirmed in graphene. The tendency of theoretical bromination reactivity of graphene was graphene with hydroxyl group > graphene with no group > graphene with lactone group > graphene with ether group > graphene with ketone group. Our study on the estimation of bromination reactivity of graphene edges provides the groundwork for the bromination of graphene edges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call