Abstract
Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) are widely used as brominated flame retardants (BFRs) in consumer products. Because humans can be exposed to BFRs mainly through air or dust, the effects of the BFRs on the respiratory system and the underlying mechanisms were investigated. HBCD exposure significantly increased the expression of intercellular adhesion molecule (ICAM)-1 and the production of interleukin (IL)-6 and -8 in human bronchial epithelial cells (BEAS-2B). TBBPA exposure significantly increased the expression of ICAM-1 and IL-6, but not IL-8. HBCD and TBBPA stimulated epidermal growth factor (EGF) production and EGF receptor (EGFR) phosphorylation. Inhibitors of EGFR-selective tyrosine kinase and the subsequent mitogen-activated protein kinase effectively blocked the increase in the expression of proinflammatory proteins. The activation of nuclear factor-kappa B (p50, p65) and activator protein 1 (c-Jun) was also observed following HBCD exposure. Furthermore, the modulation for nuclear receptors was investigated. TBBPA but not HBCD showed ligand activity for thyroid hormone receptor (TR) and TR antagonist significantly suppressed the TBBPA-induced increase of the expression of ICAM-1 and IL-6. In conclusion, HBCD and TBBPA can disrupt the expression of proinflammatory proteins in bronchial epithelial cells, possibly via the modulation of EGFR-related pathways and/or nuclear receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.