Abstract

Brominated halonitromethanes (Br-HNMs) are generated in water disinfection processes and present high toxicity to human health. This work used aspartic acid (ASP) as the precursor to reveal that bromide (Br-) induced the production of Br-HNMs in the UV/chlorine disinfection process. Consequently, six Br-HNMs were identified, and their yields presented an increasing and then declining evolution over the reaction time from 0 to 15 min. Also, the total Br-HNMs yield reached the maximum of 251.1μgL-1 at 5 min and then declined to 107.1μgL-1. The total Br-HNMs yield increased from 2.40 to 251.14μgL-1 with the increase of Cl2:Br- ratios from 0.25 to 3.0 by increasing free chlorine dosage with a fixed Br- concentration, and it increased from 207.59 to 251.14μgL-1 and then decreased to 93.44μgL-1 with the increase of Cl2:Br- ratio from 1.0 to 3.6 by increasing Br- concentration with a fixed free chlorine dosage. Besides, the total Br-HNMs yield reached the highest value (251.14μgL-1) at pH 7.0 and the lowest value (74.20μgL-1) at pH 8.0. Subsequently, the possible reaction mechanism of Br-HNMs generated from ASP was deduced, and the changes in toxicity of Br-HNMs also followed an increasing and then declining trend, closely relating to Br-HNMs yields and Br- utilization. This work explored and illustrated the yields, influence factors, reaction mechanisms, and toxicity of Br-HNMs formed from Br- containing ASP water during UV/chlorine disinfection, which might help to control Br-HNMs formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call