Abstract

Abstract Recent theoretical studies of the bromate electroreduction from strongly acidic solution have been overviewed in view of very high redox-charge and energy densities of this process making it attractive for electric energy sources. Keeping in mind non-electroactivity of the bromate ion the possibility to ensure its rapid transformation via a redox-mediator cycle (EC′ mechanism) is analyzed. Alternative route via the bromine/bromide redox couple and the comproportionation reaction inside the solution phase is considered within the framework of several theoretical approaches based on the conventional Nernst layer model, or on its recently proposed advanced version (Generalized Nernst layer model), on the convective diffusion transport equations. This analysis has revealed that this process corresponds to a novel (EC″) electrochemical mechanism since the transformation of the principal oxidant (bromate) is carried out via autocatalytic redox cycle where the bromate consumption leads to progressive accumulation of the bromine/bromide redox couple catalyzing the process. As a result, even a tracer amount of its component, bromine, in the bulk solution leads under certain conditions to extremely high current densities which may even overcome the diffusion-limited one for bromate, i.e. be well over 1 A/cm2 for concentrated bromate solutions. This analysis allows one to expect that the hydrogen–bromate flow battery may generate very high values of both the current density and specific electric power, over 1 A/cm2 and 1 W/cm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.