Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes are found in all domains of life and catalyze a wide range of biochemical reactions. Recently, an organometallic intermediate, Ω, has been experimentally implicated in the 5'-deoxyadenosyl radical generation mechanism of the radical SAM superfamily. In this work, we employ broken-symmetry density functional theory to evaluate several structural models of Ω. The results show that the calculated hyperfine coupling constants (HFCCs) for the proposed organometallic structure of Ω are inconsistent with the experiment. In contrast, a near-attack conformer of SAM bound to the catalytic [4Fe-4S] cluster, in which the distance between the unique iron and SAM sulfur is ∼3 Å, yields HFCCs that are all within 1 MHz of the experimental values. These results clarify the structure of the ubiquitous Ω intermediate and suggest a paradigm shift reversal regarding the mechanism of SAM cleavage by members of the radical SAM superfamily.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.