Abstract

The design of bandgap-engineered all-solid photonic bandgap fibers based on a broken-ring structure is investigated in detail. Both density of states maps and Bloch mode field distributions are used to show how the bandgap structure can be engineered and a higher-order gap be greatly expanded by replacing the high-index germanium-doped rod in a repeating cell with a ring of several individual high-index rods. The strategy is that both the azimuthal and radial orders of the cladding LP modes can be controlled by the broken-ring parameters. In particular, the rod number determines the highest azimuthal order of the LP mode that is less affected by the broken-ring, and the bandgap width is largely affected by the rod size. The result of bandgap engineering is that the higher-order bandgap can be utilized to design all-solid photonic bandgap fibers with very broad transmission windows of 488 nm and 944 nm centered at 800 nm and 1550 nm, respectively, and with typical normal-zero-anomalous dispersion profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.