Abstract
The ability of a quantum dot to confine photogenerated electron-hole pairs created interest in the behavior of such an exciton in a ``dot molecule,'' being a possible register in quantum computing. When two quantum dots are brought close together, the quantum state of the exciton may extend across both dots. The exciton wave function in such a dot molecule may exhibit entanglement. Atomistic pseudopotential calculations of the wave function for an electron-hole pair in a dot molecule made of two identical ${\mathrm{In}}_{x}{\mathrm{Ga}}_{1\ensuremath{-}x}\mathrm{As}∕\mathrm{Ga}\mathrm{As}$ dots reveal that the common assumption of single-particle wave functions forming bonding and antibonding states is erroneous. The true behavior of single-particle electrons and holes leads to symmetry-broken excitonic two-particle wave functions, dramatically suppressing entanglement. We find that at large interdot separations, the exciton states are built from heteronuclear single-particle states while at small interdot separations the exciton is derived from heteronuclear hole states and homonuclear electron states. We calculate the entanglement of the excitons and find a maximum value of 80% at an interdot separation of $8.5\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$ and very small values for larger and smaller distances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.