Abstract

To examine the effect of Lewis number on the extinction boundary, flame regimes, and the formation of sporadic flames, microgravity experiments on counterflow flames for CH4/O2/Kr (Le ≈ 0.7–0.8) and CH4/O2/Xe (Le ≈ 0.5) mixtures, and three types of computations, which are one-dimensional computations with a PREMIX-based code using detailed chemistry, and three- and one-dimensional computations with the thermal-diffusion model using an overall one-step reaction were conducted. In the microgravity experiments, planar flames, planar flames with propagating edges, planar flames with receding edges, star-shaped flames, cellular flames, and sporadic flames were identified, and their regions of existence in the equivalence ratio-stretch rate plane were obtained. Sporadic flames were formed for Xe mixtures but not for Kr mixtures in the experiments. Similarly, sporadic flames were formed at Le = 0.50 but not at Le = 0.75 in the three-dimensional computations with the thermal-diffusion model. Also, the flame regime of sporadic flames extended far beyond the extinction boundaries obtained in the one-dimensional computations in both experiments and the three-dimensional computations. Furthermore, a comparison of the sporadic flames and flame balls in the three-dimensional computations showed that sporadic flames are intermediate combustion modes that segue flame balls to propagating flames.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.