Abstract

Abstract Throughout most of the shortwave spectrum, atmospheric gases do not absorb the abundant amount of incoming solar radiation. The shortwave-scattering albedo of clouds is very large. The combination of large amounts of incoming solar radiation, low gaseous absorptivity, and large cloud-scattering albedo enables clouds at one level of the atmosphere to affect the shortwave radiative transfer at all other atmospheric levels. Absorption by atmospheric gases is much stronger in the longwave. This localizes the effects of clouds in the longwave. Since longwave absorption is weakest in the window region (8–12 μm), cloud effects there will have the greatest chance of propagating to other levels of the atmosphere. In partially overcast conditions, individual cloud geometry and optical properties are important factors. Longwave calculations of most GCMs ignore individual cloud geometry. For liquid water clouds, the optical properties of clouds are also ignored. Previous work in the window region by Takara a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.