Abstract
Brody disease is an inherited disorder of skeletal muscle function characterized by increasing impairment of relaxation during exercise. The autosomal recessive form can be caused by mutations in the ATP2A1 gene, which encodes for the sarcoplasmic/endoplasmic reticulum Ca-ATPase 1 (SERCA1) protein. We studied 2 siblings affected by Brody disease. The patients complained of exercise-induced delay of muscle relaxation and stiffness since childhood and had gene analysis of ATP2A1. Morphologic and biochemical studies were performed on a muscle biopsy from 1 patient. The biopsy showed fiber size variation and increased numbers of fibers with internal nuclei. Ultrastructural examination revealed dilatation of lateral cisternae and proliferation of tubular elements of the sarcoplasmic reticulum. By immunohistochemistry, SERCA1 was expressed in a normal pattern, but sarcoplasmic reticulum Ca-ATPase activity was significantly reduced. Immunoblotting after high-resolution 2-dimensional gel electrophoresis showed a significant difference in the amount of SERCA1 protein between the patient and controls. Both patients were found to have 2 previously unreported in-frame deletions in ATP2A1. Because SERCA1 protein has specific biochemical characteristics in our patient, these results underline the importance of a pathologic and biochemical analyses for the diagnosis. In addition, we describe 2 novel mutations in the ATP2A1 gene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Neuropathology & Experimental Neurology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.