Abstract

Antimicrobial peptides, as an integral part of the innate immune system, kill bacteria through a special mechanism of action, making them less susceptible to drug resistance. However, Lipopolysaccharide (LPS) as the permeation barrier on the bacterial membrane, inhibits the antibacterial activity of antimicrobial peptides and triggers the inflammatory response. GWKRKRFG is an LPS binding sequence with a β-boomerang motif that can be linked to antimicrobial peptides to enhance their LPS affinity and reduce the possibility of LPS-induced inflammatory responses. In this study, a series of hybrid peptides were designed by conjugating the reported LPS binding sequence to the C-/N-terminal sequences of the natural porcine antimicrobial peptide PMAP-23 to increase the LPS affinity of peptides. Among all the designed hybrid peptides, 4R-PP-G8 showed the best antibacterial activity, nonhemolytic activity, and excellent cell selectivity. The presence of LPS not only induced the secondary structure transformation of 4R-PP-G8 from a random structure to an α-helical structure but also reduced the antibacterial activity of 4R-PP-G8 in a dose-dependent manner, indicating the excellent binding ability of 4R-PP-G8 to LPS. The LPS/LTA binding assay further verified the interaction between the peptide and LPS. The membrane permeability test verified that 4R-PP-G8 possessed a strong capability to penetrate the bacterial membrane after interacting with LPS. More direct membrane disruption was observed under FE-SEM and TEM. In conclusion, we provided a simple and efficient method to improve the LPS binding ability of antimicrobial peptides and enhance their antimicrobial activity, resulting in the peptide 4R-PP-G8 with clinical application potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call