Abstract

Inducible resistance responses play a central role in the defense of plants against pathogen attack. Acquired resistance (AR) is induced alongside defense toward primary attack, providing broad-spectrum protection against subsequent pathogen challenge. The localization and molecular basis of AR in cereals is poorly understood, in contrast with the well-characterized systemic acquired resistance (SAR) response in Arabidopsis. Here, we use Pseudomonas syringae as a biological inducer of AR in barley, providing a clear frame of reference to the Arabidopsis-P. syringae pathosystem. Inoculation of barley leaf tissue with the nonadapted P. syringae pv. tomato avrRpm1 (PstavrRpm1) induced an active local defense response. Furthermore, inoculation of barley with PstavrRpm1 resulted in the induction of broad-spectrum AR at a distance from the local lesion, "adjacent" AR, effective against compatible isolates of P. syringae and Magnaporthe oryzae. Global transcriptional profiling of this adjacent AR revealed similarities with the transcriptional profile of SAR in Arabidopsis, as well as transcripts previously associated with chemically induced AR in cereals, suggesting that AR in barley and SAR in Arabidopsis may be mediated by analogous pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.