Abstract

Room-temperature terahertz (THz) quantum cascade laser sources with intracavity difference-frequency nonlinear mixing are electrically pumped monolithic semiconductor laser sources operating in the 0.6–6 THz spectral range. We report widely tunable, low-frequency THz quantum cascade laser sources using a lens-coupled Cherenkov waveguide scheme. Based on a watt-class high-power, λ ∼ 13.7 μm quantum cascade laser, the monolithic THz source is strongly coupled with a high-resistivity silicon lens, which causes a major increase in the THz coupling efficiency and demonstrates significant performance improvements. A room-temperature 1.5 THz device produces a 0.2 mW peak output power with a high-quality beam pattern. Improved THz outcoupling efficiency using the lens-coupled scheme enabled the demonstration of a high-performance external-cavity semiconductor THz source that is tunable from 420 GHz to 2 THz. The external-cavity, lens-coupled device configuration can technically be assembled into a butterfly-style package for a thumb-sized, widely frequency tunable THz semiconductor source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.