Abstract

Development of multivariate metal-organic frameworks (MOFs) as derivatives of the state-of-art water-harvesting material MOF-303 {[Al(OH)(PZDC)], where PZDC2- is 1H-pyrazole-3,5-dicarboxylate} was shown to be a powerful tool to generate efficient water sorbents tailored to a given environmental condition. Herein, a new multivariate MOF-303-based water-harvesting framework series from readily available reactants is developed. The resulting MOFs exhibit a larger degree of tunability in the operational relative humidity range (16%), regeneration temperature (14 °C), and desorption enthalpy (5 kJ mol-1) than reported previously. Additionally, a high-yielding (≥90%) and scalable (∼3.5 kg) synthesis is demonstrated in water and with excellent space-time yields, without compromising framework crystallinity, porosity, and water-harvesting performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.