Abstract

The opioid epidemic has increased parentally acquired HIV infection. To inform the development of a long-acting prevention strategy, we evaluated the protective efficacy of broadly neutralizing antibodies (bNAbs) against intravenous simian-human immunodeficiency virus (SHIV) infection in macaques. Five cynomolgus macaques were injected once subcutaneously with 10-1074 and 3BNC117 (10 mg each kg-1) and were repeatedly challenged intravenously once weekly with SHIVAD8-EO (130 TCID50), until infection was confirmed via plasma viral load assay. Two control macaques, which received no antibody, were challenged identically. Plasma viremia was monitored via RT-qPCR assay. bNAb concentrations were determined longitudinally in plasma samples via TZM-bl neutralization assays using virions pseudotyped with 10-1074-sensitive (X2088_c9) or 3BNC117-sensitive (Q769.d22) HIV envelope proteins. Passively immunized macaques were protected against a median of five weekly intravenous SHIV challenges, as compared to untreated controls, which were infected following a single challenge. Of the two bNAbs, 10-1074 exhibited relatively longer persistence in vivo. The median plasma level of 10-1074 at SHIV breakthrough was 1.1 μg ml-1 (range: 0.6-1.6 μg ml-1), whereas 3BNC117 was undetectable. Probit modeling estimated that 6.6 μg ml-1 of 10-1074 in plasma corresponded to a 99% reduction in per-challenge infection probability, as compared to controls. Significant protection against repeated intravenous SHIV challenges was observed following administration of 10-1074 and 3BNC117 and was due primarily to 10-1074. Our findings extend preclinical studies of bNAb-mediated protection against mucosal SHIV acquisition and support the possibility that intermittent subcutaneous injections of 10-1074 could serve as long-acting preexposure prophylaxis for persons who inject drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.