Abstract

Expansion of the scope of the 1,3-diaza-Claisen rearrangement beyond bridged-bicyclic tertiary allylic amines has been investigated through a tethering strategy. Isothioureas tethered to tertiary allylic amines are converted to carbodiimides through a reaction with AgOTf/Et3N. Intramolecular cyclization of the tertiary allylic amine to the carbodiimide equilibrates with a zwitterionic intermediate. Heating the carbodiimide/zwitterion affords a rearrangement product. Heating carbodiimide/zwitterion with a deuterated allyl group results in the scrambling of the deuterium label, which is consistent with an ionic mechanism involving heterolytic cleavage of the allylic C-N bond, followed by trapping of the allyl cation at either terminal carbon. The ionic mechanism is attributed to silver salt contamination since pushing deuterium-labeled carbodiimide/zwitterion through silica gel prior to heating results in clean deuterium transposition consistent with a sigmatropic mechanism, and adding back silver salts results in deuterium scrambling. Overall, the tethering strategy broadens the scope of the rearrangement to simpler allylic substrates. Density functional theory (DFT) calculations of the sigmatropic rearrangement are in agreement with reactivity trends observed with reactions run under silver-free conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.