Abstract
The proof-theoretic origins and specialized models of linear logic make it primarily operational in orientation. In contrast first-order logic treats the operational and denotational aspects of general mathematics quite evenhandedly. Here we show that linear logic has models of even broader denotational scope than those of first order logic, namely Chu spaces, the category of which Barr has observed to form a model of linear logic. We have previously argued that every category of n-ary relational structures embeds fully and concretely in the category of Chu spaces over 2n. The main contributions of this paper are improvements to that argument, and an embedding of every small category in the category of Chu spaces via a symmetric variant of the Yoneda embedding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.