Abstract

In the light of the recent potentials of deuterated molecules as pharmaceuticals or even in mechanistic understanding, efficient methods for their synthesis are continually desired. CD3-containing molecules are prominent amongst these motifs due to the parallel of the "magic methyl effect": introducing a methyl group into pharmaceuticals could positively affect biological activities. The trideuteromethyl group is bound to molecules either by C, N, O, or S atom. For a long time, the preparation methods of such labeled compounds were underestimated and involved multi-step syntheses. More recently, specific approaches dealing with the direct incorporation of the CD3 group have been developed. This Review gives an overview of the methods for the preparation of CD3-labeled molecules from conventional functional group interconversion techniques to catalytic approaches and include radical strategy. Detailed reaction mechanisms are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.