Abstract
To deal with lack of density over imbalanced datasets, a Negative Selection Over-Sampling Technology (NSOTE) is proposed. NSOTE is based on a negative selection mechanism of our human immune system. It generates antigen-derived detectors of majority class examples to enrich the decision regions of the space of minority class. Meanwhile, through learning the density distribution of minority class examples, NSOTE eliminates the noise detectors that deviate from the minority class space. Our experimental results show that our NSOTE can achieve better performance than existing resampling methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.