Abstract

We study an important specialization of the general problem of broadcasting on directed acyclic graphs, namely, that of broadcasting on two-dimensional (2D) regular grids. Consider an infinite directed acyclic graph with the form of a 2D regular grid, which has a single source vertex <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula> at layer 0, and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k + 1$ </tex-math></inline-formula> vertices at layer <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k \geq 1$ </tex-math></inline-formula> , which are at a distance of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> from <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula> . Every vertex of the 2D regular grid has outdegree 2, the vertices at the boundary have indegree 1, and all other non-source vertices have indegree 2. At time 0, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula> is given a uniform random bit. At time <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k \geq 1$ </tex-math></inline-formula> , each vertex in layer <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> receives transmitted bits from its parents in layer <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k-1$ </tex-math></inline-formula> , where the bits pass through independent binary symmetric channels with common crossover probability <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta \in \left({0,\frac {1}{2}}\right)$ </tex-math></inline-formula> during the process of transmission. Then, each vertex at layer <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> with indegree 2 combines its two input bits using a common deterministic Boolean processing function to produce a single output bit at the vertex. The objective is to recover <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula> with probability of error better than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\frac {1}{2}$ </tex-math></inline-formula> from all vertices at layer <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> as <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k \rightarrow \infty $ </tex-math></inline-formula> . Besides their natural interpretation in the context of communication networks, such broadcasting processes can be construed as one-dimensional (1D) probabilistic cellular automata, or discrete-time statistical mechanical spin-flip systems on 1D lattices, with boundary conditions that limit the number of sites at each time <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k+1$ </tex-math></inline-formula> . Inspired by the literature surrounding the “positive rates conjecture” for 1D probabilistic cellular automata, we conjecture that it is impossible to propagate information in a 2D regular grid regardless of the noise level <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta $ </tex-math></inline-formula> and the choice of common Boolean processing function. In this paper, we make considerable progress towards establishing this conjecture, and prove using ideas from percolation and coding theory that recovery of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula> is impossible for any <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta \in \left({0,\frac {1}{2}}\right)$ </tex-math></inline-formula> provided that all vertices with indegree 2 use either AND or XOR for their processing functions. Furthermore, we propose a detailed and general martingale-based approach that establishes the impossibility of recovering <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula> for any <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta \in \left({0,\frac {1}{2}}\right)$ </tex-math></inline-formula> when all NAND processing functions are used if certain structured supermartingales can be rigorously constructed. We also provide strong numerical evidence for the existence of these supermartingales by computing several explicit examples for different values of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\delta $ </tex-math></inline-formula> via linear programming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call