Abstract

Future network is all about an integrated global network based on an open-systems approach. Integrating different types of wireless networks with wireline backbone networks seamlessly and the convergence of voice, multimedia, and data traffic over a single IP-based core network will be the main focus of 4G. With the availability of ultrahigh bandwidth of up to 100 Mbps, multimedia services can be supported efficiently. Ubiquitous computing is enabled with enhanced system mobility and portability support, and location-based services and support of ad hoc networking are expected. Fig. 1 illustrates the networks and components within the future network architecture. It integrates different network topologies and platforms. There are two levels of integration: the first is the integration of heterogeneous wireless networks with varying transmission characteristics such as wireless LAN (Local Area Network), WAN (Wide Area Network), and PAN (Personal Area Network) as well as mobile ad hoc networks; the second level includes the integration of wireless networks and fixed network-backbone infrastructure, the Internet and PSTN (Public Switched Telephone Network). Recent advancement in wireless communications and electronics has enabled the development of low-cost sensor networks. WSN are composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it. A wireless sensor network can be used in a wide variety of commercial and military applications such as inventory managing, disaster areas monitoring, patient assisting, and target tracking. The wireless sensor node, being a microelectronic device, can only be equipped with a limited power source. The issue of energy-efficient communication in WSN has been attracting attention of many researches during last several years. Broadcasting is a common operation that allows the node in WSN to share its data efficiently among each other. Broadcasting can be used for network discovery to initiate the configuration of the network, to discover multiple routes between a given pair of nodes, and to query for a piece of desired data in a network (N. B. Chang & M. Liu, 2007). In wireless sensor networks, broadcasting can serve as an efficient solution for the sensors to share their local measurements among each other due to the robustness and the effectiveness of the protocol. 5

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.