Abstract

A simple signaling method for broadcast channels with multiple-transmit multiple-receive antennas is proposed. In this method, for each user, the direction in which the user has the maximum gain is determined. The best user in terms of the largest gain is selected. The corresponding direction is used as the modulation vector (MV) for the data stream transmitted to the selected user. The algorithm proceeds in a recursive manner where in each step, the search for the best direction is performed in the null space of the previously selected MVs. It is demonstrated that with the proposed method, each selected MV has no interference on the previously selected MVs. Dirty-paper coding is used to cancel the remaining interference. For the case that each receiver has one antenna, the presented scheme coincides with the known scheme based on Gram-Schmidt orthogonalization (QR decomposition). To analyze the performance of the scheme, an upper bound on the cumulative distribution function (CDF) of each subchannel is derived which is used to establish the diversity order and the asymptotic sum-rate of the scheme. It is shown that using fixed rate codebooks, the diversity order of the jth data stream, 1 les j les M, is equal to N(M - j + 1)(K - j + 1), where M, N, and K indicate the number of transmit antennas, the number of receive antennas, and the number of users, respectively. Furthermore, it is proven that the throughput of this scheme scales as M log log(K) and asymptotically (K rarr infin) tends to the sum-capacity of the multiple-input multiple-output (MIMO) broadcast channel. The simulation results indicate that the achieved sum-rate is close to the sum-capacity of the underlying broadcast channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.