Abstract
In coding schemes for the wire-tap channel or the broadcast channels with confidential messages, it is well known that the sender needs to use a stochastic encoding to avoid the information about the transmitted confidential message to be leaked to an eavesdropper. In this paper, it is investigated that the trade-off between the rate of the random number to realize the stochastic encoding and the rates of the common, private, and confidential messages. For the direct theorem, the superposition coding scheme for the wire-tap channel recently proposed by Chia and El Gamal is employed, and its strong security is proved. The matching converse theorem is also established. Our result clarifies that a combination of the ordinary stochastic encoding and the channel prefixing by the channel simulation is suboptimal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.