Abstract

We propose a silicon waveguide structure employing silica-filled vertical-dual slots for broadband wavelength conversion, which can be fabricated using simple silicon-on-insulator technology. We demonstrate group-velocity dispersion tailoring by varying the width of the core, the slots and the side strips, and put forward a method to achieve spectrally-flattened near-zero anomalous group-velocity dispersion at telecom wavelengths. A proposed structure provides a group-velocity dispersion parameter β2 of −60 ps2/km with an effective mode area Aeff of 0.075 µm2 at 1550 nm. This structure is predicted to significantly broaden the bandwidth of wavelength conversion via four-wave mixing, which is validated with experimentally measured 3 dB bandwidth of 76 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call