Abstract

We propose a new mechanism for constructing waveguide intersections with broad bandwidth and low cross talk in photonic crystal (PC) circuits. The intersections are created by combination of coupled-cavity wave-guides (CCWs) with conventional line-defect waveguides. This mechanism utilizes the strong dependence of the defect coupling on the field pattern in the defects and the alignment of the defects (i.e., the coupling angle) in CCWs. By properly designing the defect mode, we demonstrate through numerical simulation the establishment of such a waveguide intersection in one of the most useful PCs, which is based on a two-dimensional triangular lattice of air holes made in a dielectric material. The transmission of a 500-fs pulse at ~1.3 microm is simulated by use of the finite-difference time-domain method, showing negligible distortion and low cross talk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call