Abstract

Acoustic metastructures are artificial structures which can manipulate the wavefront in sub-wavelength dimensions, and previously proposed acoustic metastructures have been mostly realized with single materials. An acoustic metastructure with composite structure is proposed for underwater acoustic stealth considering both wavefront manipulation and sound absorption. The unit cells of the metastructure are composed of a metallic supporting lattice, interconnecting polymer materials and mass balancing columns. With the gradual modulations of equivalent physical properties along the horizontal direction of metastructure, the incident acoustic wave is reflected to other directions. Meanwhile, the polymer material inside the unit cells will dissipate the acoustic wave energy due to inherent damping properties. With the simultaneous modulations of reflected wave direction and scattering acoustic amplitude, significant improvement of the underwater stealth effect is achieved. Compared with single-phase metastructure, the Far-Field Sound Pressure Level (FFSPL) of multiphase metastructure decreases by 4.82 dB within the frequency range of 3 kHz~30 kHz. The linearized mean stress for multiphase metastructure is only 1/3 of that of single-phase metastructure due to it having much thicker struts and much more uniform stress distribution under the same hydrostatic pressure. The proposed composite structure possesses potential applications due to its acceptable thickness (80 mm) and low equivalent density (1100 kg/m3).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call