Abstract

A model for energy harvesting from a rotating automotive tyre is suggested in which the principle of stochastic resonance is advantageously exploited. A bistable response characteristic is obtained by recourse a small harvester comprising a magnetically repellant configuration in which an instrumented cantilever beam can flip between two physical response states when suitably excited by the rotation of a car wheel into which it is fitted. The rotation of the wheel creates a periodic modulation which enables stochastic resonance to take place and as a consequence of this for energy to be harvested from road noise transmitted through the tyre. An optimised mathematical model of the system is presented based on a series of experimental tests and it is shown that a ten-fold increase in harvested energy over a comparable monostable case is feasible. The suggested application for this harvester is to provide electrical power for a tyre pressure monitoring system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.