Abstract

The potential for various future industrial applications has made broadband photodetectors beyond visible light an area of great interest. Although most 2D van-der-Waals (vdW) semiconductors have a relatively large energy bandgap (>1.2eV), which limits their use in short-wave infrared detection, they have recently been considered as a replacement for ternary alloys in high-performance photodetectors due to their strong light-matter interaction. In this study, a ferroelectric gating ReS2 /WSe2 vdW heterojunction-channel photodetector is presented that successfully achieves broadband light detection (>1300nm, expandable up to 2700nm). The staggered type-II bandgap alignment creates an interlayer gap of 0.46eV between the valence band maximum (VBMAX ) of WSe2 and the conduction band minimum (CBMIN ) of ReS2 . Especially, the control of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric dipole polarity for a specific wavelength allows a high photoresponsivity of up to 6.9 × 103 A W-1 and a low dark current below 0.26 nA under the laser illumination with a wavelength of 405nm in P-up mode. The achieved high photoresponsivity, low dark current, and full-range near infrared (NIR) detection capability open the door for next-generation photodetectors beyond traditional ternary alloy photodetectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call