Abstract

We design, fabricate, and characterize a multilayer nanophotonic structure that couples light from standard optical fiber to an integrated photonics chip with unprecedented efficiency. The structure comprises a multilayer waveguide array tapering into a single waveguide supporting only fundamental TE- and TM-like modes. Measurements reveal a record-setting fiber-to-chip coupling efficiency of ${98.3}\% \;{\pm}\;{0.3}\%$ per facet at a 1575 nm wavelength that remains greater than ${92.8}\% \;{\pm}\;{0.4}\%$ across the 1550–1600 nm wavelength range. This approach is tailorable to any material platform, fiber type, or operating wavelength and represents a significant step forward for the accessibility of integrated photonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.