Abstract

We report broadband transmissions of terahertz radiations through the air channel of thin-wall pipe. The impacts of the wall thickness and of the refractive index of the material on the transmission window bandwidth are investigated. An extension of the bandwidth by at least 5.5 times is reported with a commercial drinking straw. The salient properties of the antiresonant reflecting guiding mechanism are studied with the terahertz time domain spectroscopy method, including the reduction of the attenuation coefficient of the propagated field by 60 times the material absorption coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.