Abstract

The broadband terahertz (THz) emission from drifting two-dimensional electron gas (2DEG) in an AlGaN/GaN heterostructure at 6 K is reported. The devices are designed as THz plasmon emitters according to the Smith-Purcell effect and the ‘shallow water’ plasma instability mechanism in 2DEG. Plasmon excitation is excluded since no signature of electron-density dependent plasmon mode is observed. Instead, the observed THz emission is found to come from the heated lattice and/or the hot electrons. Simulated emission spectra of hot electrons taking into account the THz absorption in air and Fabry-Pérot interference agree well with the experiment. It is confirmed that a blackbody-like THz emission will inevitably be encountered in similar devices driven by a strong in-plane electric field. A conclusion is drawn that a more elaborate device design is required to achieve efficient plasmon excitation and THz emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.