Abstract

We present broadband high sensitivity terahertz (THz) detectors based on 90 nm CMOS technology with the state-of-the-art performance. The devices are based on bow-tie and log-spiral antenna-coupled field-effect transistors (FETs) for the detection of free-space THz radiation (TeraFETs). We report on optimized performance, which was achieved by employing an in-house developed physics-based model during detector design and thorough device characterization under THz illumination. The implemented detector with bow-tie antenna design exhibits a nearly flat frequency response characteristic up to 2.2 THz with an optical responsivity of 45 mA/W (or 220 V/W). We have determined a minimum optical noise-equivalent power as low as 48 pW/ $\sqrt {\textsf {Hz}}$ at 0.6 THz and 70 pW/ $\sqrt {\textsf {Hz}}$ at 1.5 THz. The results obtained at 1.5 THz are better than the best narrowband TeraFETs reported in the literature at this frequency and only up to a factor of four inferior to the best narrowband devices at 0.6 THz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.