Abstract
We demonstrate a spectrally correlated photon-pair source at telecom wavelengths (spanning across the S-, C-, and L-bands), based on type-0 spontaneous parametric downconversion (SPDC) in a fiber-coupled Zn-indiffused MgO doped periodically poled lithium niobate (PPLN) ridge waveguide. Modal analysis of the waveguide performed through numerical finite element method (FEM) simulation indicates that device temperature can be used to dramatically vary and control the emission spectrum. Efficient photon-pair generation is measured over a broad wavelength range from ∼1520 - 1580 nm [full width at half maximum (FWHM) > 45 nm] with a coincidence-to-accidental ratio (CAR) as high as ∼668 and spectral brightness ∼2.5 × 107 pairs/s/mW/nm. Such sources can be employed in wavelength division multiplexed (WDM) quantum key distribution (QKD) over existing fiber-optic networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.