Abstract
High-speed optical-resolution photoacoustic microscopy (OR-PAM), integrating the merits of high spatial resolution and fast imaging acquisition, can observe dynamic processes of the optical absorption-based molecular specificities. However, it remains challenging for the evaluation to morphological and physiological parameters that are closely associated with photoacoustic spectrum due to the inadequate ultrasonic frequency response of the routinely-employed piezoelectric transducer. By utilizing the galvanometer for fast optical scanning and our previously-developed surface plasmon resonance sensor as an unfocused broadband ultrasonic detector, high-speed spectroscopic photoacoustic imaging was accessed in the OR-PAM system, achieving an acoustic bandwidth of ∼125 MHz and B-scan rate at ∼200 Hz over a scanning range of ∼0.5 mm. Our system demonstrated the dynamic imaging of the moving phantoms’ structures and the simultaneous characterization of their photoacoustic spectra over time. Further, fast volumetric imaging and spectroscopic analysis of microanatomic features of a zebrafish eye ex vivo was obtained label-freely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.