Abstract

In this Letter, we theoretically study spontaneous parametric downconversion (SPDC) in a periodically poled structure composed of two linearly uncoupled resonators that are nonlinearly coupled via a Mach-Zehnder interferometer. The device does not require dispersion engineering to achieve efficient doubly resonant SPDC, and, unlike the case of a single resonator, one can reconfigure the system to generate photon pairs over a bandwidth of hundreds of nm. We consider the case of SPDC pumped at 775 nm in a periodically poled lithium niobate (PPLN) device compatible with up-to-date technological platforms. We calculated pair generation rates of up to 250 MHz/mW pump power for a single resonance and integrated pair generation rates of up to 100 THz/mW pump power over 170 nm. When properly reconfigured, a single device can efficiently generate over a bandwidth of some 300 nm, covering the S, C, L, and U infrared bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.