Abstract

A novel approach based on spatiotemporal differential- operators is developed here for broadband, velocity-dependent scattering. Unlike the spectral-domain representations, the new method facilitates a compact formulation for scattering by arbitrary excitation signals, in the presence of moving objects. In free space (vacuum), relativistically exact formulas are developed. After developing the general theory, analysis of relativistically exact free-space scattering by cylinders, and a half-plane, are examined. For cylinders the analysis shows that in the far field pulses are located on circles in the co-moving reference-frame where the object is at-rest. In other reference frames this feature is valid only as an approximation. These results apply also to the diffractive part of the half-plane scattered field. The geometrical-optics contribution is associated with plane-waves and obeys the appropriate transformations. The various zones for these fields in an arbitrary reference-frame are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.