Abstract

Undoped and Eu3+-doped cubic yttria (Y2O3) nanophosphors of good crystallinity, with selective particle sizes ranging between 6 and 37 nm and showing narrow size distributions, have been synthesized by a complex-based precursor solution method. The systematic size tuning has been evidenced by transmission electron microscopy, X-ray diffraction, and Raman scattering measurements. Furthermore, size-modulated properties of Eu3+ ions have been correlated with the local structure of Eu3+ ion in different sized Y2O3:Eu3+ nanophosphors by means of steady-state and time-resolved site-selective laser spectroscopies. Time-resolved site-selective excitation measurements performed in the 7F0 → 5D0 peaks of the Eu3+ ions at C2 sites have allowed us to conclude that Eu3+ ions close to the nanocrystal surface experience a larger crystal field than those in the nanocrystal core. Under the site-selective excitation in the 7F0 → 5D0 peaks, energy transfer between the sites has also been observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.