Abstract

Graphene is an excellent electronic and photonic material for developing electronic–photonic integrated circuits in Si-based semiconductor devices with ultra wide operational bandwidth. As an extended application, here we propose a broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide, and investigate the optical characteristics numerically at a wavelength of 1.55 μm. The optical device is based on the surface plasmon polariton absorption of graphene. By electrically tuning the graphene’s refractive index as low as that of a noble metal, the hybrid plasmonic waveguide supports a strongly confined highly lossy hybrid long-range surface plasmon polariton strip mode, and hence light coupled from an input waveguide experiences significant power attenuation as it propagates along the waveguide. Over the entire C-band from 1.530 to 1.565 μm wavelengths, the on/off extinction ratio is larger than 13.7 dB. This modulator has the potential to play a key role in realizing graphene–Si waveguide-based integrated photonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.