Abstract

Rotational energy is widely distributed in many industrial and domestic applications, such as ventilation systems, moving vehicles and miniature turbines. This paper reports the design and implementation of a bi-stable rotational energy harvester with wide bandwidth and low operating frequency. The rotational energy is converted into electricity by magnetic plucking of a piezoelectric cantilever using a driving magnet mounted on a rotating host. The bistable condition is achieved by introducing a fixed magnet above the tip magnet at the cantilever's free end. The repulsive magnetic force between the magnets creates two equilibrium positions for the piezoelectric beam. The harvester is designed to operate in the high energy orbit (interwell vibration mode) to extract more energy from the rotational energy source. Harvesters with and without bistability are compared experimentally, showing the difference of power extraction on both the output power and bandwidth. The method proposed in this paper provides a simple and efficient way to extract rotational energy from the ambient environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call