Abstract

Semiconductor superluminescent light-emitting diodes (SLEDs) have emerged as ideal and vital broadband light sources with extensive applications, such as optical fiber-based sensors, biomedical sensing/imaging, wavelength-division multiplexing system testing and optoelectronic systems, etc. Self-assembled quantum dots (SAQDs) are very promising candidates for the realization of broadband SLED due to their intrinsic large inhomogeneous spectral broadening. Introducing excited states (ESs) emission could further increase the spectral bandwidth. However, almost all QD-based SLEDs are limited to the ground state (GS) or GS and first excited state (ES1) emission. In this work, multiple five-QD-layer structures with large dot size inhomogeneous distribution were grown by optimizing the molecular beam epitaxy (MBE) growth conditions. Based on that, with the assistance of a carefully designed mirror-coating process to accurately control the cavity mirror loss of GS and ESs, respectively, a broadband QD-SLED with three simultaneous states of GS, ES1 and second excited-state (ES2) emission has been realized, exhibiting a large spectral width of 91 nm with a small spectral dip of 1.3 dB and a high continuous wave (CW) output power of 40 mW. These results pave the way for a new fabrication technique for high-performance QD-based low-coherent light sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.