Abstract

Coupling of light to and from integrated optical circuits has been recognized as a major practical challenge since the early years of photonics. The coupling is particularly difficult for high index contrast waveguides such as silicon-on-insulator, since the cross-sectional area of silicon wire waveguides is more than two orders of magnitude smaller than that of a standard single-mode fiber. Here, we experimentally demonstrate unprecedented control over the light coupling between the optical fiber and silicon chip by constructing the nanophotonic coupler with ultra-high coupling efficiency simultaneously for both transverse electric and transverse magnetic polarizations. We specifically demonstrate a subwavelength refractive index engineered nanostructure to mitigate loss and wavelength resonances by suppressing diffraction effects, enabling a coupling efficiency over 92% (0.32 dB) and polarization independent operation for a broad spectral range exceeding 100 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.