Abstract

Polarization degeneracy of electromagnetic plane waves in vacuum and in any bulk isotropic media is the keynote operational principle of many optical devices such as polarizers and interferometers. However, surface and guided waves spectra are typically either not degenerated at all or meet degeneracy only at very specific dispersion points. In this paper, we offer a design of a periodic photonic structure based on zinc oxide (ZnO) nanocylinders providing the broadband polarization degeneracy of the guided waves in the near-IR frequency range. We analyze the impact of the spatial dispersion and substrate on the degeneracy breaking. We offer the design based on ZnO nanocylinders with aluminum-doped zinc oxide substrate, achieving the degeneracy in the vicinity of a telecommunication wavelength, for the practical implementation. Finally, we propose and verify numerically a potentially important device–waveguide polarizer, which is the analogue to the $\lambda /4$ plate for the guided waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.