Abstract

We utilized inverse design to engineer the point-spread function (PSF) of a low-f-number, freeform diffractive microlens in an array, so as to enable extended depth of focus (DOF). Each square microlens of side 69 µm and focal length 40 µm (in a polymer film, n∼1.47) generated a square PSF of side ∼10 µm that was achromatic over the visible band (450 to 750 nm), and also exhibited an extended DOF of ∼ ± 2 µm. The microlens has a geometric f/# (focal length divided by aperture size) of 0.58 in the polymer material (0.39 in air). Since each microlens is a square, the microlens array (MLA) can achieve 100% fill factor. By placing this microlens array (MLA) directly on a high-resolution print, we demonstrated integral imaging with applications in physical security. The extended DOF preserves the optical effects even with expected film-thickness variations, thereby increasing robustness in practical applications. Since these multi-level diffractive MLAs are fabricated using UV-nanoimprint lithography, they have the potential for low-cost large volume manufacturing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call