Abstract

An important issue in resonant vibration energy harvesters is that the best performance of the device is limited to a very narrow bandwidth around the fundamental resonance frequency. If the excitation frequency deviates slightly from the resonance condition, the power out is drastically reduced. In order to overcome this issue of the conventional resonant cantilever configuration, a non-resonant piezomagnetoelastic energy harvester has been introduced by the authors. This paper presents theoretical and experimental investigations of high-energy orbits in the piezomagnetoelastic energy harvester over a range of excitation frequencies. Lumped-parameter nonlinear equations (electromechanical form of the bistable Duffing oscillator with piezoelectric coupling) can successfully describe the large-amplitude broadband voltage response of the piezomagnetoelastic configuration. Following the comparison of the electromechanical trajectories obtained from the theory, it is experimentally verified that the piezomagnetoelastic configuration can generate an order of magnitude larger power compared to the commonly employed piezoelastic counterpart at several frequencies. Chaotic response of the piezomagnetoelastic configuration is also compared against the periodic response of the piezoelastic configuration theoretically and experimentally. Overcoming the bias caused by the gravity in vertical excitation of the piezomagnetoelastic energy harvester is discussed and utilization of high-energy orbits in the bistable structural configuration for electrostatic, electromagnetic and magnetostrictive transduction mechanisms is summarized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.