Abstract

Linear arrays steered to end-fire provide superdirective robust performance if a constraint is imposed on the white-noise gain. Filter-and-sum beamformers achieve the maximum constrained directivity by tuning their complex weights over the frequency. Delay-and-sum beamformers have simpler structures, but their weights are fixed and optimized at a given frequency. This letter investigates the constrained directivity provided over a broad band by different delay-and-sum techniques. Complex weights and analytic signals attain near-optimal broadband performance over four octaves. Oversteered arrays using real weights and signals were found to attain superdirective performance over approximately two octaves. Hearing aids and directional hydrophones are potential applications for the considered arrays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.