Abstract

The rapid development of global telecommunication, cloud computing, big data, consumer electronics create increasing demands to expand the capacity and rate of data transmission for next generation broadband optical communication. It raises a great challenge for current rare‐earth ions doped fiber amplifiers due to the narrow emission bandwidth of rare‐earth ions. In this context, broadband near‐infrared (NIR) emitter based optical amplifiers are in urgent demand. Here, broadband optical amplification in S + C + L bands is achieved for the first time in PbS quantum dot (QD)‐doped low‐melting‐point glass fiber. With the pump of a 976 nm laser, the on‐off gain of PbS QD‐doped fiber (PQDF) ranges from 1.4 to 8.7 dB in 1500–1630 nm, while that of PbS QD‐doped glass ranges from 6.9 to 8.4 dB in 1530–1630 nm. Both QD‐doped glass and optical fiber show tunable luminescence covering the entire optical communication windows (O + E + S + C + L + U). The much higher quantum yield of PbS QDs in glass than that of colloidal QDs, the ultra‐broad and controllable emission bands and bandwidth make PbS QDs doped glass and fiber promising for applications in next generation broadband optical fiber amplifiers and tunable fiber lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.