Abstract

We demonstrate the broadband operation of a switchable terahertz quarter-wave plate achieved with an active metasurface employing vanadium dioxide. For this purpose, we utilize anisotropically deformed checkerboard structures, which present broadband characteristics compatible with deep modulation. Moreover, the metasurface is integrated with a current injection circuit to achieve state switching; this injection circuit can also be employed to monitor the electric state of vanadium dioxide. We estimate the Stokes parameters derived from the experimental transmission spectra of the fabricated metasurface and confirm the helicity switching of circularly polarized waves near a designed frequency of 0.66 THz. The relative bandwidth is evaluated to be 0.52, which is 4.2 times broader than that in a previous study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.